
 www.PeakLearningLLC.com

Peak Learning LLC www.PeakLearningLLC.com 717-541-1357

Design Patterns in Java Software (3 Day)

Class Overview

This course seeks to develop, for the experienced Java programmer, a strong, shared vocabulary of

design patterns and best practices. The course begins with a discussion of how to recognize and apply

design patterns - that is, how to incorporate pattern awareness into one's own analysis, design, and

implementation practices. The main body of the course focuses on the Gang of Four design patterns,

with a chapter each on creational, behavioral, and structural patterns. The course includes both pencil-

and-paper design exercises and traditional coding labs to reinforce finer points of important patterns.

This is not a patterns catalog: it is as much a study of how to "think in patterns" as it is an introduction to

several of the most important patterns. Students will be challenged to bring their own previous

development experience to the discussion, to see the patterns in everyday design and coding solutions.

The course puts more emphasis on some patterns than others. We believe that students will be better

served by going into several patterns in depth -- and with lively discussions of several others -- than by

through every GoF pattern in rote form.

The course also includes an optional "Chapter Zero" on some more basic practices in object-oriented

concepts and OO factoring and re-factoring. Though not appropriate for all students, it may be helpful

for some audiences with less real-world Java experience.

Class Goals

 Start to think in terms of design patterns.
 Recognize and apply patterns to specific software development problems.
 Use known patterns as a shared vocabulary in designing and discussing solutions.
 Use Factories and Singletons to control object creation, for a variety of reasons.
 Use Observers, Observables, and Model/View/Controller systems to decouple application

behavior and preserve code scalability.
 Understand the full motivation for the Command pattern and take advantage of Command

frameworks in JFC.
 Implement Adapters, rather than building redundant classes or creating intermediate data

structures for consumption by existing code.
 Understand and apply a range of other J2SE and J2EE patterns to improve code quality and

scalability, and to produce high-quality solutions right off the bat.

Peak Learning LLC www.PeakLearningLLC.com 717-541-1357

Class Outline

Object-Oriented Refactoring
A Place for Everything ...
Magic Numbers and String Literals
Effective Use of Enumerated Types
Externalizing Volatile Information
Over-Encapsulation
Separation of Concerns
Making Classes Observable
Delegation Instead of Inheritance
Factories and Dependency Injection

Recognizing and Applying Patterns

Design Patterns
Defining a Pattern
Unified Modeling Language
Seeing Patterns
Warning Signs and Pitfalls
Functional Programming and Its Impact on Patterns

Creational Patterns

Factory Patterns
The Singleton Pattern
Singleton vs. Class Utility
APIs and Providers
Cascading Factories
Factories vs. Dependency Injection

Behavioral Patterns

Un-Tangling Your Code
Warning Sign: Letting Subclasses Dictate
The Strategy Pattern
The Template Method Pattern
The Observer Pattern
Functional Interfaces as Observers
The Model/View/Controller Pattern
The Command Pattern
The Chain of Responsibility Pattern

Structural Patterns

The Composite Pattern
The Adapter Pattern
Adapters for Performance
The Decorator Pattern
The Façade Pattern
The Flyweight Pattern
Fixed vs. Open Flyweights

Peak Learning LLC www.PeakLearningLLC.com 717-541-1357

J2EE Patterns

Model/View/Controller, Redux
The Intercepting Filter Pattern
The Front and Application Controller Patterns
The Business Delegate Pattern
The Service Locator Pattern
The Transfer Object Pattern
The Composite Entity Pattern
The Data Access Object Pattern

