
 www.PeakLearningLLC.com

Peak Learning LLC www.PeakLearningLLC.com 717-541-1357

Intermediate/Advanced Java (5 Days)

This course teaches programming in the Java language -- i.e. the Java Standard Edition platform.
It is intended for students with previous Java experience or training, who already know the
fundamentals of the Java architecture and basic procedural programming. This course provides
in-depth coverage of object-oriented concepts and how to apply them to Java software design
and development. We then move from these basic skills into key parts of the Java SE Core API,
including collections and logging, and introduces features of functional programming, new to
the language as of Java 8, including functional interfaces, lambda expressions, and streams.

This revision of the course targets the Java 8 language and Core API. See our course catalog for
training explicitly geared to earlier versions of Java, going back as far as J2SE 1.4.2. To read more
about different versions of Java and for help deciding on which version of this course to use, see
"Java Versions and Terminology Demystified".)

Students come to Java from a wide range of backgrounds, and this course is designed to be as
flexible as possible over the upper end of that range. Specifically:

• Experienced C and C++ programmers will find this course a very good fit and if anything
will find that they complete it in a little less than the full five-day timeline.

Prerequisites

 Experience in the following is required for this Java Fundamentals class:
• Students must be able to write, compile, test, and debug simple Java programs, using

structured programming techniques, strong data types, and flow-control constructs such as
conditionals and loops.

Course Benefits

• Chiefly, learn to program effectively in the Java language.
• Understand Java as a purely object-oriented language, and implement software as

systems of classes.
• Implement and use inheritance and polymorphism, including interfaces and abstract

classes.
• Design appropriate exception handling into Java methods, and use the logging API

appropriately.
• Use Java as a functional language, making appropriate choices of tools including inner

classes, functional interfaces, method references, and lambda expressions.
• Use the Stream API for efficient processing of data sets.

Peak Learning LLC www.PeakLearningLLC.com 717-541-1357

Course Outline

Review of Java Fundamentals
The Java Architecture
Forms for Java Software
Three Platforms
The Java Language
Numeric Types
Characters and Booleans
Enumerations
Object References
Strings and Arrays
Conditional Constructs
Looping Constructs
Varargs

Object-Oriented Software

Complex Systems
Abstraction
Classes and Objects
Responsibilities and Collaborators
UML
Relationships
Visibility

Classes and Objects

Java Classes
Constructors and Garbage Collection
Naming Conventions and JavaBeans
Relationships Between Classes
Using this
Visibility
Packages and Imports
Overloading Methods and Constructors
JARs

Inheritance and Polymorphism in Java

UML Specialization
Extending Classes
Using Derived Classes
Type Identification
Compile-Time and Run-Time Type
Polymorphism
Overriding Methods
The @Override Annotation
Superclass Reference

Using Classes Effectively

Class Loading
Static Members
Statics and Non-Statics
Static Initializers
Static Imports
Prohibiting Inheritance
Costs of Object Creation
Strings and StringBuffers
Controlling Object Creation
Understanding Enumerated Types
Stateful and Behavioral Enumerations

Interfaces and Abstract Classes

Separating Interface and Implementation
UML Interfaces and Realization
Defining Interfaces
Implementing and Extending Interfaces
Abstract Classes

Peak Learning LLC www.PeakLearningLLC.com 717-541-1357

Collections

Dynamic Collections vs. Arrays
UML Parameterized Type
Generics
Using Generics
The Collections API
The Collection<E> and List<E> Interfaces
The ArrayList<E> and LinkedList<E> Classes
Looping Over Collections: Iterable<E>
Collecting Primitive Values: Auto-Boxing
Using Wildcards with Generic Types
Iterators and the Iterator<E> Interface
Maps and the Map<K,V> Interface
Sorted Collections
The SortedSet<E> and SortedMap<K,V>

Interfaces
The Collections Class Utility
Algorithms
Conversion Utilities

Exception Handling and Logging

Reporting and Trapping Errors
Exception Handling
Throwing Exceptions
Declaring Exceptions per Method
Catching Exceptions
The finally Block
Catch-and-Release
Chaining Exceptions
try-with-resources
Logging
The Java SE Logging API
Loggers
Logging Levels
Handlers
Configuration
Best Practices

Nested Classes

Nested Classes
Static Classes
Inner Classes
Relationship with the Outer Object
Local Classes
Enclosing Scope
Anonymous Classes

Functional Programming

Passing Behavior as a Parameter
Inner Classes
Functional Interfaces
Built-In Functional Interfaces
Lambda Expressions
Scope and Visibility
Deferred Execution
Method References
Creational Methods
Designing for Functional Programming
Default Methods

Streams

The Stream Processing Model
Streams
Relationship to Collections
Advantages and Disadvantages
Iterating, Filtering, and Mapping
Primitive-Type Streams
Aggregate Functions and Statistics
Sorting
Generating, Limiting, and Reducing
Finding and Matching
Grouping
Flattening and Traversing
Sequential vs. Parallel Processing

